criterion performance measurements
overview
want to understand this report?
SeqFrac/SeqFrac
lower bound | estimate | upper bound | |
---|---|---|---|
OLS regression | xxx | xxx | xxx |
R² goodness-of-fit | xxx | xxx | xxx |
Mean execution time | 1.4588797731250907 | 1.471862181645785 | 1.4851358387500113 |
Standard deviation | 1.3071184020918045e-2 | 1.5135177961370412e-2 | 1.6762978866883643e-2 |
Outlying measurements have moderate (0.1875%) effect on estimated standard deviation.
ParFrac/ParFrac 1
lower bound | estimate | upper bound | |
---|---|---|---|
OLS regression | xxx | xxx | xxx |
R² goodness-of-fit | xxx | xxx | xxx |
Mean execution time | 1.5408751420000044 | 1.5978070373748778 | 1.6209556826247535 |
Standard deviation | 2.551377811922377e-3 | 4.316138843444181e-2 | 5.345950626556354e-2 |
Outlying measurements have moderate (0.18749999999999997%) effect on estimated standard deviation.
ParFrac/ParFrac 2
lower bound | estimate | upper bound | |
---|---|---|---|
OLS regression | xxx | xxx | xxx |
R² goodness-of-fit | xxx | xxx | xxx |
Mean execution time | 1.2780093840001427 | 1.3107687375625119 | 1.343528091124881 |
Standard deviation | 2.815450903737189e-2 | 3.872764184971843e-2 | 4.47146064717521e-2 |
Outlying measurements have moderate (0.1875%) effect on estimated standard deviation.
ParFrac/ParFrac 4
lower bound | estimate | upper bound | |
---|---|---|---|
OLS regression | xxx | xxx | xxx |
R² goodness-of-fit | xxx | xxx | xxx |
Mean execution time | 0.9022439297500569 | 0.9315607583958657 | 0.9608775870416746 |
Standard deviation | 2.3453656007255057e-2 | 3.510679828734604e-2 | 4.139124264535679e-2 |
Outlying measurements have moderate (0.1875%) effect on estimated standard deviation.
ParFrac/ParFrac 8
lower bound | estimate | upper bound | |
---|---|---|---|
OLS regression | xxx | xxx | xxx |
R² goodness-of-fit | xxx | xxx | xxx |
Mean execution time | 0.8822269797504987 | 0.9013751625833493 | 0.9318873297496566 |
Standard deviation | 4.095216667339627e-4 | 3.0139634958818655e-2 | 3.822855525341981e-2 |
Outlying measurements have moderate (0.1875%) effect on estimated standard deviation.
ParFrac/ParFrac 16
lower bound | estimate | upper bound | |
---|---|---|---|
OLS regression | xxx | xxx | xxx |
R² goodness-of-fit | xxx | xxx | xxx |
Mean execution time | 0.7635821080622236 | 0.7916986194374734 | 0.8124903663749592 |
Standard deviation | 2.9004053914257893e-3 | 2.7396248980941652e-2 | 3.39163535180602e-2 |
Outlying measurements have moderate (0.1875%) effect on estimated standard deviation.
ParFrac/ParFrac 32
lower bound | estimate | upper bound | |
---|---|---|---|
OLS regression | xxx | xxx | xxx |
R² goodness-of-fit | xxx | xxx | xxx |
Mean execution time | 0.7135004270003265 | 0.7480865439168459 | 0.7664793926668002 |
Standard deviation | 6.2059983335227e-3 | 3.2953665898625244e-2 | 4.2476464707800705e-2 |
Outlying measurements have moderate (0.18749999999999997%) effect on estimated standard deviation.
ParFrac/ParFrac 64
lower bound | estimate | upper bound | |
---|---|---|---|
OLS regression | xxx | xxx | xxx |
R² goodness-of-fit | xxx | xxx | xxx |
Mean execution time | 0.7059506792500088 | 0.7190559861041569 | 0.7327563727499182 |
Standard deviation | 6.215318874410514e-3 | 1.6029226812478016e-2 | 2.063503247731646e-2 |
Outlying measurements have moderate (0.18749999999999997%) effect on estimated standard deviation.
ParFrac/ParFrac 128
lower bound | estimate | upper bound | |
---|---|---|---|
OLS regression | xxx | xxx | xxx |
R² goodness-of-fit | xxx | xxx | xxx |
Mean execution time | 0.7136471241877871 | 0.7405977605208515 | 0.7647279069997239 |
Standard deviation | 1.8405280093353082e-2 | 2.9571444461219874e-2 | 3.732090616729532e-2 |
Outlying measurements have moderate (0.18749999999999997%) effect on estimated standard deviation.
understanding this report
In this report, each function benchmarked by criterion is assigned a section of its own. The charts in each section are active; if you hover your mouse over data points and annotations, you will see more details.
- The chart on the left is a kernel density estimate (also known as a KDE) of time measurements. This graphs the probability of any given time measurement occurring. A spike indicates that a measurement of a particular time occurred; its height indicates how often that measurement was repeated.
- The chart on the right is the raw data from which the kernel density estimate is built. The x axis indicates the number of loop iterations, while the y axis shows measured execution time for the given number of loop iterations. The line behind the values is the linear regression prediction of execution time for a given number of iterations. Ideally, all measurements will be on (or very near) this line.
Under the charts is a small table. The first two rows are the results of a linear regression run on the measurements displayed in the right-hand chart.
- OLS regression indicates the time estimated for a single loop iteration using an ordinary least-squares regression model. This number is more accurate than the mean estimate below it, as it more effectively eliminates measurement overhead and other constant factors.
- R² goodness-of-fit is a measure of how accurately the linear regression model fits the observed measurements. If the measurements are not too noisy, R² should lie between 0.99 and 1, indicating an excellent fit. If the number is below 0.99, something is confounding the accuracy of the linear model.
- Mean execution time and standard deviation are statistics calculated from execution time divided by number of iterations.
We use a statistical technique called the bootstrap to provide confidence intervals on our estimates. The bootstrap-derived upper and lower bounds on estimates let you see how accurate we believe those estimates to be. (Hover the mouse over the table headers to see the confidence levels.)
A noisy benchmarking environment can cause some or many measurements to fall far from the mean. These outlying measurements can have a significant inflationary effect on the estimate of the standard deviation. We calculate and display an estimate of the extent to which the standard deviation has been inflated by outliers.