Category Theory for Programmers Cheat Sheet
 compiled by Fabricio Olivetti de França

How to use this guide

- Match a type signature with one of those in the following boxes.
- Check if the properties hold.
- Create an instance of the matched class.

Monoid

class Monoid m where
mempty :: m
mappend :: m \rightarrow m \rightarrow m
(<>) = mappend

Properties:

x <> mempty $=$ mempty <> $\mathrm{x}=\mathrm{x}$
($\mathrm{a}<>\mathrm{b}$) <> c = a <> (b <> c)
$\mathrm{a}<>\mathrm{b}=\mathrm{b}$ <> a
(the last property only for commutative Monoids)

Semiring

class Semiring a where
plus :: a -> a -> a
times :: a -> a -> a
zero :: a
one : : a
Properties:
zero + x = x + zero = x
$x+(y+z)=(x+y)+z$
$x+y=y+x$
one * $\mathrm{x}=\mathrm{x}$ * one $=\mathrm{x}$
$\mathrm{x} *(\mathrm{y} * \mathrm{z})=(\mathrm{x} * \mathrm{y}) * \mathrm{z}$
$\mathrm{x} *(\mathrm{y}+\mathrm{z})=(\mathrm{x} * \mathrm{y})+(\mathrm{x} * \mathrm{z})$
$(\mathrm{x}+\mathrm{y}) * \mathrm{z}=(\mathrm{x} * \mathrm{z})+(\mathrm{y} * \mathrm{z})$
zero * $\mathrm{x}=\mathrm{x} *$ zero $=$ zero

Ring

class Semiring a $=>$ Ring a where
negate : : a -> a

Properties:
negate $\mathrm{x}+\mathrm{x}=$ zero

Functor

```
class Functor F where
fmap : : (a -> b) -> F a \(\rightarrow\) F b
(<\$>) = fmap
```

Properties:
fmap id = id
fmap (g . f) $=\mathrm{fmap} \mathrm{g}$. fmap f

Contravariant

class Contravariant f where
contramap :: (a -> b) ->

$$
(>\$):: b \rightarrow f b \rightarrow f a
$$

Properties:
contramap id = id
contramap f . contramap $\mathrm{g}=$ contramap (g . f)

Representable Functor

class Contravariant $f \Rightarrow$ Representable f where type Rep f : : *
tabulate : : (a -> Rep f) -> f a
index : : f a -> a -> Rep f
Properties:
tabulate . index = id
index . tabulate $=$ id

Adjunction

class (Functor f, Representable y) =>
Adjunction $f u \mid f->u, u->f$ where
unit : : a -> u (f a)
counit :: f (u a) -> a
leftAdjunct : : (f a -> b) -> a -> u b rightAdjunct : : ($\mathrm{a}->\mathrm{u}$ b) $\rightarrow \mathrm{f} \mathrm{a}->\mathrm{b}$

Properties:

$$
\begin{array}{ll}
\text { unit } & =\text { leftAdjunct id } \\
\text { counit } & =\text { rightAdjunct id } \\
\text { leftAdjunct } & =\text { fmap } g \cdot \text { unit } \\
\text { rightAdjunct } & =\text { counit } \cdot \text { fmap } g
\end{array}
$$

Applicative

$$
\begin{aligned}
& \text { class Functor } f \text { => Applicative } f \text { where } \\
& \text { pure : : a }->\mathrm{f} \text { a } \\
& \text { (<*>) : : f (a -> b) -> f a -> f b } \\
& \text { (*>) :: f a }->\mathrm{f} \text { b } \rightarrow \text { f b } \\
& \text { (<*) :: f a }->\text { f b }->\text { f }
\end{aligned}
$$

Properties:

pure id <*> v = v
pure (.) <*> u <*> v <*> w = u <*> (v <*> w)
pure f <*> pure $x=$ pure (f x)
u <*> pure $\mathrm{y}=$ pure (\$ y) <*> u

Monad

class Applicative m => Monad m where return : : a $->\mathrm{m}$ a

Properties:

```
return a >>= k = k a
```

m >>= return $=\mathrm{m}$
pure $f<*>$ pure $x=$ pure (f x)
$\mathrm{m} \gg=(\backslash \mathrm{x}->\mathrm{k} x \mathrm{x} \gg \mathrm{h})=(\mathrm{m} \gg=\mathrm{k}) \gg=\mathrm{h}$

Comonad

class Functor w => Comonad w where
extract : : w a -> a
duplicate : : w a $->$ w (w a)
extend $\quad:$ (w a $->\mathrm{b}$) $->$ w a $->$ w b
(=>>) $\quad::$ w a $->$ (w a \rightarrow b) \rightarrow w b

Properties:

extend extract = id
extract . extend $f=f$
extend f. extend $g=$ extend (f. extend g)

