criterion performance measurements

overview

want to understand this report?

SeqFrac/SeqFrac

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 1.4588797731250907 1.471862181645785 1.4851358387500113
Standard deviation 1.3071184020918045e-2 1.5135177961370412e-2 1.6762978866883643e-2

Outlying measurements have moderate (0.1875%) effect on estimated standard deviation.

ParFrac/ParFrac 1

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 1.5408751420000044 1.5978070373748778 1.6209556826247535
Standard deviation 2.551377811922377e-3 4.316138843444181e-2 5.345950626556354e-2

Outlying measurements have moderate (0.18749999999999997%) effect on estimated standard deviation.

ParFrac/ParFrac 2

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 1.2780093840001427 1.3107687375625119 1.343528091124881
Standard deviation 2.815450903737189e-2 3.872764184971843e-2 4.47146064717521e-2

Outlying measurements have moderate (0.1875%) effect on estimated standard deviation.

ParFrac/ParFrac 4

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 0.9022439297500569 0.9315607583958657 0.9608775870416746
Standard deviation 2.3453656007255057e-2 3.510679828734604e-2 4.139124264535679e-2

Outlying measurements have moderate (0.1875%) effect on estimated standard deviation.

ParFrac/ParFrac 8

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 0.8822269797504987 0.9013751625833493 0.9318873297496566
Standard deviation 4.095216667339627e-4 3.0139634958818655e-2 3.822855525341981e-2

Outlying measurements have moderate (0.1875%) effect on estimated standard deviation.

ParFrac/ParFrac 16

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 0.7635821080622236 0.7916986194374734 0.8124903663749592
Standard deviation 2.9004053914257893e-3 2.7396248980941652e-2 3.39163535180602e-2

Outlying measurements have moderate (0.1875%) effect on estimated standard deviation.

ParFrac/ParFrac 32

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 0.7135004270003265 0.7480865439168459 0.7664793926668002
Standard deviation 6.2059983335227e-3 3.2953665898625244e-2 4.2476464707800705e-2

Outlying measurements have moderate (0.18749999999999997%) effect on estimated standard deviation.

ParFrac/ParFrac 64

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 0.7059506792500088 0.7190559861041569 0.7327563727499182
Standard deviation 6.215318874410514e-3 1.6029226812478016e-2 2.063503247731646e-2

Outlying measurements have moderate (0.18749999999999997%) effect on estimated standard deviation.

ParFrac/ParFrac 128

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 0.7136471241877871 0.7405977605208515 0.7647279069997239
Standard deviation 1.8405280093353082e-2 2.9571444461219874e-2 3.732090616729532e-2

Outlying measurements have moderate (0.18749999999999997%) effect on estimated standard deviation.

understanding this report

In this report, each function benchmarked by criterion is assigned a section of its own. The charts in each section are active; if you hover your mouse over data points and annotations, you will see more details.

Under the charts is a small table. The first two rows are the results of a linear regression run on the measurements displayed in the right-hand chart.

We use a statistical technique called the bootstrap to provide confidence intervals on our estimates. The bootstrap-derived upper and lower bounds on estimates let you see how accurate we believe those estimates to be. (Hover the mouse over the table headers to see the confidence levels.)

A noisy benchmarking environment can cause some or many measurements to fall far from the mean. These outlying measurements can have a significant inflationary effect on the estimate of the standard deviation. We calculate and display an estimate of the extent to which the standard deviation has been inflated by outliers.